CSSER – Center for Solid State Electronics Research

CSSER has a mission to "Conduct research, develop technology, and provide educational opportunities which will engender international leadership in solid state electronics."

We manage a multi-user flexible foundry (the NanoFab) with 30,000 sq. ft. of laboratory space including a 4000 sq. ft. class 100 cleanroom.

CSSER supports the research projects of > 40 ASU faculty, > 100 graduate students and 6 external users including three faculty start-ups.

Major research themes include:

- Bio and Molecular Electronics
- Nanostructures
- Molecular Beam Epitaxy & Optoelectronics
- Micro-Electro-Mechanical-Systems (MEMS)

4" and 6" CMOS process that includes:

- low-stress silicon nitride
- LP-CVD of poly-Si

- wet and dry oxidation (including thick oxides up to 10 $\mu\text{m})$
- n- and p-type doping
 - e.g. thin oxides for wafer bonding

e.g. poly-Si thin-film transistors

Mask making and optical lithography

•High resolution (1.5nm) field emission scanning electron microscopy

Center for Solid State Electronics Research

 Metal deposition and general purpose reactive ion etching

Advanced metrology and device characterization

- advanced lithography
 20 nm on 8" wafers
 - JEOL 6000SF electron beam lithography system

12 nm lines for SEMATECH Corp.

A silicon nanopore with a diameter of ~ 50 nm

an array of 100 million pores each with diameter of 100 nm

 deep – Si etch and wafer bonding for BioMEMS

e.g. a combination of advanced etching, wafer bonding and alignment tools allows new bioMEMS sensors based on cell proteins

 general purpose micro- and nanofabrication for research and education

e.g. 2 μm ring oscillator for EEE435 CMOS Processing course

e.g. 'Bosch' process for deep silicon etching

e.g. GaN RF Transistor

Contact details:

Trevor Thornton, Director

Tel: (480) 965-3808 t.thornton@asu.edu

Stefan Myhajlenko, Associate Director

tel: (480) 965-2697 myhajlenko@asu.edu

www.fulton.asu.edu/nanofab

